Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Front Public Health ; 8: 569209, 2020.
Article in English | MEDLINE | ID: covidwho-1389248

ABSTRACT

Only 4 months after the beginning of SARS-CoV-2 epidemic, the world is facing a global pandemic due to a complex and insidious virus that today constantly poses new challenges. In this study, we highlight a persistent shedding of SARS-CoV-2 RNA into the urine, even in patients with a negative nasopharyngeal swab and in patients considered recovered. What does it mean? Besides the fact that the kidney is a probable site of viral replication, the prolonged viral excretion is a matter of great concern for our drainage system contamination.


Subject(s)
COVID-19/transmission , COVID-19/urine , SARS-CoV-2 , Urine/virology , Virus Shedding , Wastewater/virology , Adult , Aged , Aged, 80 and over , Female , Humans , Italy , Male , Middle Aged , Pandemics , Pilot Projects , Risk Factors
3.
Viruses ; 13(8)2021 08 20.
Article in English | MEDLINE | ID: covidwho-1376996

ABSTRACT

The straw-coloured fruit bat (Eidolon helvum) is widespread in sub-Saharan Africa and is widely hunted for bushmeat. It is known to harbour a range of paramyxoviruses, including rubuloviruses and henipaviruses, but the zoonotic potential of these is unknown. We previously found a diversity of paramyxoviruses within a small, captive colony of E. helvum after it had been closed to contact with other bats for 5 years. In this study, we used under-roost urine collection to further investigate the paramyxovirus diversity and ecology in this colony, which had been closed to the outside for 10 years at the time of sampling. By sampling urine weekly throughout an entire year, we investigated possible seasonal patterns of shedding of virus or viral RNA. Using a generic paramyxovirus L-gene PCR, we detected eight distinct paramyxovirus RNA sequences. Six distinct sequences were detected using a Henipavirus-specific PCR that targeted a different region of the L-gene. Sequence detection had a bi-annual pattern, with the greatest peak in July, although different RNA sequences appeared to have different shedding patterns. No significant associations were detected between sequence detection and birthing season, environmental temperature or humidity, and no signs of illness were detected in any of the bats in the colony during the period of sample collection.


Subject(s)
Chiroptera/urine , Chiroptera/virology , Paramyxovirinae/metabolism , RNA, Viral/metabolism , Animals , Disease Reservoirs/virology , Paramyxovirinae/classification , Paramyxovirinae/genetics , Paramyxovirinae/isolation & purification , RNA, Viral/genetics , Seasons , Urine/virology , Virus Shedding
4.
J Am Soc Nephrol ; 32(10): 2517-2528, 2021 10.
Article in English | MEDLINE | ID: covidwho-1259282

ABSTRACT

BACKGROUND: AKI is a complication of coronavirus disease 2019 (COVID-19) that is associated with high mortality. Despite documented kidney tropism of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), there are no consistent reports of viral detection in urine or correlation with AKI or COVID-19 severity. Here, we hypothesize that quantification of the viral load of SARS-CoV-2 in urine sediment from patients with COVID-19 correlates with occurrence of AKI and mortality. METHODS: The viral load of SARS-CoV-2 in urine sediments (U-viral load) was quantified by qRT-PCR in 52 patients with PCR-confirmed COVID-19 diagnosis, who were hospitalized between March 15 and June 8, 2020. Immunolabeling of SARS-CoV-2 proteins Spike and Nucleocapsid was performed in two COVID-19 kidney biopsy specimens and urine sediments. Viral infectivity assays were performed from 32 urine sediments. RESULTS: A total of 20 patients with COVID-19 (39%) had detectable SARS-CoV-2 U-viral load, of which 17 (85%) developed AKI with an average U-viral load four-times higher than patients with COVID-19 who did not have AKI. U-viral load was highest (7.7-fold) within 2 weeks after AKI diagnosis. A higher U-viral load correlated with mortality but not with albuminuria or AKI stage. SARS-CoV-2 proteins partially colocalized with the viral receptor ACE2 in kidney biopsy specimens in tubules and parietal cells, and in urine sediment cells. Infective SARS-CoV-2 was not detected in urine sediments. CONCLUSION: Our results further support SARS-CoV-2 kidney tropism. A higher SARS-CoV-2 viral load in urine sediments from patients with COVID-19 correlated with increased incidence of AKI and mortality. Urinary viral detection could inform the medical care of patients with COVID-19 and kidney injury to improve prognosis.


Subject(s)
Acute Kidney Injury/virology , COVID-19/complications , SARS-CoV-2/isolation & purification , Viral Load , Acute Kidney Injury/etiology , Acute Kidney Injury/urine , Adult , Aged , Angiotensin-Converting Enzyme 2/analysis , COVID-19/urine , Female , Humans , Male , Middle Aged , Severity of Illness Index , Urine/virology
6.
J Transl Med ; 19(1): 30, 2021 01 07.
Article in English | MEDLINE | ID: covidwho-1059718

ABSTRACT

BACKGROUND: COVID-19 has caused a global pandemic and the death toll is increasing. However, there is no definitive information regarding the type of clinical specimens that is the best for SARS-CoV-2 detection, the antibody levels in patients with different duration of disease, and the relationship between antibody level and viral load. METHODS: Nasopharyngeal swabs, anal swabs, saliva, blood, and urine specimens were collected from patients with a course of disease ranging from 7 to 69 days. Viral load in different specimen types was measured using droplet digital PCR (ddPCR). Meanwhile, anti-nucleocapsid protein (anti-N) IgM and IgG antibodies and anti-spike protein receptor-binding domain (anti-S-RBD) IgG antibody in all serum samples were tested using ELISA. RESULTS: The positive detection rate in nasopharyngeal swab was the highest (54.05%), followed by anal swab (24.32%), and the positive detection rate in saliva, blood, and urine was 16.22%, 10.81%, and 5.41%, respectively. However, some patients with negative nasopharyngeal swabs had other specimens tested positive. There was no significant correlation between antibody level and days after symptoms onset or viral load. CONCLUSIONS: Other specimens could be positive in patients with negative nasopharyngeal swabs, suggesting that for patients in the recovery period, specimens other than nasopharyngeal swabs should also be tested to avoid false negative results, and anal swabs are recommended. The antibody level had no correlation with days after symptoms onset or the viral load of nasopharyngeal swabs, suggesting that the antibody level may also be affected by other factors.


Subject(s)
Antibodies, Viral/blood , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Viral Load , Adult , Aged , Aged, 80 and over , Anal Canal/virology , Blood/virology , COVID-19/epidemiology , COVID-19 Serological Testing , COVID-19 Testing , China/epidemiology , False Negative Reactions , Female , Humans , Male , Middle Aged , Nasopharynx/virology , Pandemics , Saliva/virology , Specimen Handling , Time Factors , Translational Research, Biomedical , Urine/virology
7.
BMC Pregnancy Childbirth ; 21(1): 78, 2021 Jan 22.
Article in English | MEDLINE | ID: covidwho-1044307

ABSTRACT

BACKGROUND: The Coronavirus Disease 2019 (COVID-19) is a novel disease which has been having a worldwide affect since December 2019. Evidence regarding the effects of SARS-CoV-2 during pregnancy is conflicting. The presence of SARS-CoV-2 has been demonstrated in biological samples during pregnancy (placenta, umbilical cord or amniotic fluid); however, maternal and fetal effects of the virus are not well known. METHODS: Descriptive, multicentre, longitudinal, observational study in eight tertiary care hospitals throughout Spain, that are referral centres for pregnant women with COVID-19. All pregnant women with positive SARS-CoV-2 real-time reverse transcriptase polymerase chain reaction during their pregnancy or 14 days preconception and newborns born to mothers infected with SARS-CoV-2 will be included. They will continue to be followed up until 4 weeks after delivery. The aim of the study is to investigate both the effect of COVID-19 on the pregnancy, and the effect of the pregnancy status with the evolution of the SARS-CoV-2 disease. Other samples (faeces, urine, serum, amniotic fluid, cord and peripheral blood, placenta and breastmilk) will be collected in order to analyse whether or not there is a risk of vertical transmission and to describe the behaviour of the virus in other fluids. Neonates will be followed until 6 months after delivery to establish the rate of neonatal transmission. We aim to include 150 pregnant women and their babies. Ethics approval will be obtained from all the participating centres. DISCUSSION: There is little information known about COVID-19 and its unknown effects on pregnancy. This study will collect a large number of samples in pregnant women which will allow us to demonstrate the behaviour of the virus in pregnancy and postpartum in a representative cohort of the Spanish population.


Subject(s)
COVID-19/physiopathology , Pregnancy Complications, Infectious/physiopathology , Abortion, Spontaneous/epidemiology , Adult , Amniotic Fluid/virology , COVID-19/mortality , COVID-19/transmission , Feces/virology , Female , Fetal Blood/virology , Hospitalization/statistics & numerical data , Humans , Infant, Newborn , Infectious Disease Transmission, Vertical/statistics & numerical data , Intensive Care Units/statistics & numerical data , Longitudinal Studies , Milk, Human/virology , Observational Studies as Topic , Perinatal Mortality , Placenta/virology , Pre-Eclampsia/epidemiology , Pregnancy , Pregnancy Complications, Infectious/mortality , Premature Birth/epidemiology , SARS-CoV-2 , Spain/epidemiology , Urine/virology
8.
Andrology ; 9(1): 99-106, 2021 01.
Article in English | MEDLINE | ID: covidwho-910378

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) has been spreading all over the world since December 2019. However, medical information regarding the urogenital involvement in recovered COVID-19 patients is limited or unknown. OBJECTIVES: To comprehensively evaluate urogenital involvement in recovered COVID-19 patients. MATERIALS AND METHODS: Men aged between 20 years and 50 years who were diagnosed with SARS-CoV-2 infection and recovered when the study was conducted were enrolled in our study. Demographic and clinical characteristics, and history of hospitalization were collected and analyzed. Urine, expressed prostatic secretions (EPSs), and semen samples were collected for SARS-CoV-2 RNA detection. Semen quality and hormonal profiles were analyzed. RESULTS: Among 74 male recovered COVID-19 patients, 11 (14.9%) were asymptomatic, classified into mild type, and 31 (41.9%) were classified into moderate type. The remaining patients (32/74, 43.2%) had severe pneumonia. No critically ill recovered COVID-19 patient was recruited in our cohort. The median interval between last positive pharyngeal swab RT-PCR test and semen samples collection was 80 days (IQR, 64-93). The median age was 31 years (IQR, 27-36; range, 21-49), and the median body mass index (BMI) was 24.40 (IQR, 22.55-27.30). Forty-five (61.6%) men were married, and 28 (38.4%) were unmarried. Fifty-three (72.6%) patients denied cigarette smoking, 18 (24.7%) were active smokers, and 2 of them were past smokers. The majority of our participants (53/74, 72.6%) did not consume alcohol. Fever occurred in most of the patients (75.3%), and 63 of them had abnormal chest CT images. Only one patient complained of scrotal discomfort during the course of COVID-19, which was ruled out orchitis by MRI (data not shown). A total of 205 samples were collected for SARS-CoV-2 detection (74 urine samples, 70 semen samples, and 61 EPS samples). However, viral nucleic acid was not detected in body fluids from the urogenital system. In terms of hormonal profiles, the levels of FSH, LH, testosterone, and estradiol were 5.20 [4.23] mIU/mL, 3.95 [1.63] mIU/mL, 3.65 [1.19] ng/mL, and 39.48 [12.51] pg/mL, respectively. And these values were within the normal limits. The overall semen quality of recovered COVID-19 patients was above the lower reference limit released by the WHO. While compared with healthy control, sperm concentration, total sperm count, and total motility were significantly declined. In addition, different clinical types of COVID-19 have no significant difference in semen parameters, but total sperm count showed a descending trend. Interestingly, subjects with a longer recovery time showed worse data for sperm quality. Small sample size and lacking semen parameters before the infection are the major limitations of our study. DISCUSSION AND CONCLUSIONS: To the best of our knowledge, it is the largest cohort study with longest follow-up for urogenital evaluation comprehensively so far. Direct urogenital involvement was not found in the recovered COVID-19 male patients. SARS-CoV-2 RNA was undetectable in the urogenital secretions, and semen quality declined slightly, while hormonal profiles remained normal. Moreover, patients with a long time (≥90 days) since recovery had lower total sperm count. Great attention and further study should be conducted and follow-up on the reproductive function in the following months.


Subject(s)
COVID-19/virology , Prostate/virology , RNA, Viral/isolation & purification , SARS-CoV-2/isolation & purification , Semen/virology , Adult , COVID-19/diagnosis , COVID-19/therapy , COVID-19 Nucleic Acid Testing , Humans , Male , Middle Aged , RNA, Viral/genetics , RNA, Viral/urine , Remission Induction , SARS-CoV-2/genetics , Semen Analysis , Time Factors , Urine/virology , Young Adult
9.
Emerg Infect Dis ; 26(10): 2497-2499, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-836160

ABSTRACT

Along with positive SARS-CoV-2 RNA in nasopharyngeal swabs, viral RNA was detectable at high concentration for >3 weeks in fecal samples from 12 mildly symptomatic and asymptomatic children with COVID-19 in Seoul, South Korea. Saliva also tested positive during the early phase of infection. If proven infectious, feces and saliva could serve as transmission sources.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/virology , Feces/virology , Nasopharynx/virology , Pneumonia, Viral/virology , RNA, Viral/analysis , Saliva/virology , Adolescent , Asymptomatic Infections , COVID-19 , Child , Child, Preschool , Coronavirus Infections/transmission , Coronavirus Infections/urine , Humans , Infant , Infant, Newborn , Pandemics , Plasma/virology , Pneumonia, Viral/transmission , Pneumonia, Viral/urine , Republic of Korea , SARS-CoV-2 , Urine/virology , Viral Load
10.
Clin Microbiol Infect ; 26(11): 1520-1524, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-664085

ABSTRACT

OBJECTIVES: The aim was to determine whether various clinical specimens obtained from COVID-19 patients contain the infectious virus. METHODS: To demonstrate whether various clinical specimens contain the viable virus, we collected naso/oropharyngeal swabs and saliva, urine and stool samples from five COVID-19 patients and performed a quantitative polymerase chain reaction (qPCR) to assess viral load. Specimens positive with qPCR were subjected to virus isolation in Vero cells. We also used urine and stool samples to intranasally inoculate ferrets and evaluated the virus titres in nasal washes on 2, 4, 6 and 8 days post infection. RESULTS: SARS-CoV-2 RNA was detected in all naso/oropharyngeal swabs and saliva, urine and stool samples collected between days 8 and 30 of the clinical course. Notably, viral loads in urine, saliva and stool samples were almost equal to or higher than those in naso/oropharyngeal swabs (urine 1.08 ± 0.16-2.09 ± 0.85 log10 copies/mL, saliva 1.07 ± 0.34-1.65 ± 0.46 log10 copies/mL, stool 1.17 ± 0.32 log10 copies/mL, naso/oropharyngeal swabs 1.18 ± 0.12-1.34 ± 0.30 log10 copies/mL). Further, viable SARS-CoV-2 was isolated from naso/oropharyngeal swabs and saliva of COVID-19 patients, as well as nasal washes of ferrets inoculated with patient urine or stool. DISCUSSION: Viable SARS-CoV-2 was demonstrated in saliva, urine and stool samples from COVID-19 patients up to days 11-15 of the clinical course. This result suggests that viable SARS-CoV-2 can be secreted in various clinical samples and respiratory specimens.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/virology , Pneumonia, Viral/virology , Specimen Handling/methods , Animals , Betacoronavirus/genetics , Betacoronavirus/isolation & purification , COVID-19 , Chlorocebus aethiops , Feces/virology , Female , Ferrets , Genome, Viral/genetics , Humans , Male , Microbial Viability , Middle Aged , Pandemics , Pharynx/virology , RNA, Viral/genetics , SARS-CoV-2 , Saliva/virology , Urine/virology , Vero Cells , Viral Load , Virus Shedding
11.
Intensive Care Med ; 46(7): 1339-1348, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-597960

ABSTRACT

Acute kidney injury (AKI) has been reported in up to 25% of critically-ill patients with SARS-CoV-2 infection, especially in those with underlying comorbidities. AKI is associated with high mortality rates in this setting, especially when renal replacement therapy is required. Several studies have highlighted changes in urinary sediment, including proteinuria and hematuria, and evidence of urinary SARS-CoV-2 excretion, suggesting the presence of a renal reservoir for the virus. The pathophysiology of COVID-19 associated AKI could be related to unspecific mechanisms but also to COVID-specific mechanisms such as direct cellular injury resulting from viral entry through the receptor (ACE2) which is highly expressed in the kidney, an imbalanced renin-angotensin-aldosteron system, pro-inflammatory cytokines elicited by the viral infection and thrombotic events. Non-specific mechanisms include haemodynamic alterations, right heart failure, high levels of PEEP in patients requiring mechanical ventilation, hypovolemia, administration of nephrotoxic drugs and nosocomial sepsis. To date, there is no specific treatment for COVID-19 induced AKI. A number of investigational agents are being explored for antiviral/immunomodulatory treatment of COVID-19 and their impact on AKI is still unknown. Indications, timing and modalities of renal replacement therapy currently rely on non-specific data focusing on patients with sepsis. Further studies focusing on AKI in COVID-19 patients are urgently warranted in order to predict the risk of AKI, to identify the exact mechanisms of renal injury and to suggest targeted interventions.


Subject(s)
Acute Kidney Injury/virology , Betacoronavirus/isolation & purification , Coronavirus Infections/complications , Pneumonia, Viral/complications , Renin-Angiotensin System/physiology , Acute Kidney Injury/drug therapy , Acute Kidney Injury/physiopathology , Acute Kidney Injury/therapy , Betacoronavirus/physiology , Blood Coagulation Disorders/virology , COVID-19 , Coronavirus Infections/metabolism , Coronavirus Infections/urine , Creatinine/blood , Critical Illness , Hematuria/etiology , Humans , Kidney/physiopathology , Kidney/virology , Pandemics , Pneumonia, Viral/metabolism , Pneumonia, Viral/urine , Proteinuria/etiology , SARS-CoV-2 , Urinalysis , Urine/chemistry , Urine/virology
12.
Int J Biol Sci ; 16(10): 1698-1707, 2020.
Article in English | MEDLINE | ID: covidwho-24911

ABSTRACT

As a city famous for tourism, the public healthcare system of Macau SAR has been under great pressure during the outbreak of the Coronavirus Disease 2019 (COVID-19). In this study, we report clinical and microbiological features of ten COVID-19 patients enrolled in the Centro Hospitalar Conde de São Januário (CHCSJ) between January 21 to February 16, 2020. Clinical samples from all patients including nasopharyngeal swab (NPS)/sputum, urine, and feces were collected for serial virus RNA testing by standard qRT-PCR assay. In total, seven were imported cases and three were local cases. The median duration from Macau arrival to admission in imported cases was 3 days. Four patients required oxygen therapy but none of them needed machinal ventilation. No fatal cases were noted. The most common symptoms were fever (80%) and diarrhea (80%). In the "Severe" group, there was significantly more elderly patients (p=0.045), higher lactate dehydrogenase levels (p=0.002), and elevated C-Reactive protein levels compared to the "Mild to Moderate" group (p<0.001). There were positive SARS-CoV-2 RNA signals in all patients' NPS and stool specimens but negative in all urine specimens. Based on our data on SARS-CoV-2 RNA shedding in stool and the possibility of a lag in viral detection in NPS specimens, the assessment of both fecal and respiratory specimen is recommended to enhance diagnostic sensitivity, and also to aid discharge decision before the role of viral RNA shedding in stool is clarified.


Subject(s)
Betacoronavirus , Coronavirus Infections/diagnosis , Feces/virology , Pneumonia, Viral/diagnosis , RNA, Viral/isolation & purification , Virus Shedding , Adult , COVID-19 , COVID-19 Testing , COVID-19 Vaccines , Clinical Laboratory Techniques , Coronavirus Infections/drug therapy , Coronavirus Infections/therapy , Coronavirus Infections/virology , Diarrhea/virology , Female , Fever/virology , Humans , Lung/diagnostic imaging , Macau , Male , Middle Aged , Nasopharynx/virology , Pandemics , Pneumonia, Viral/therapy , Pneumonia, Viral/virology , Radiography, Thoracic , Real-Time Polymerase Chain Reaction , Retrospective Studies , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Sputum/virology , Tomography, X-Ray Computed , Urine/virology , COVID-19 Drug Treatment
13.
Nature ; 581(7809): 465-469, 2020 05.
Article in English | MEDLINE | ID: covidwho-23868

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an acute infection of the respiratory tract that emerged in late 20191,2. Initial outbreaks in China involved 13.8% of cases with severe courses, and 6.1% of cases with critical courses3. This severe presentation may result from the virus using a virus receptor that is expressed predominantly in the lung2,4; the same receptor tropism is thought to have determined the pathogenicity-but also aided in the control-of severe acute respiratory syndrome (SARS) in 20035. However, there are reports of cases of COVID-19 in which the patient shows mild upper respiratory tract symptoms, which suggests the potential for pre- or oligosymptomatic transmission6-8. There is an urgent need for information on virus replication, immunity and infectivity in specific sites of the body. Here we report a detailed virological analysis of nine cases of COVID-19 that provides proof of active virus replication in tissues of the upper respiratory tract. Pharyngeal virus shedding was very high during the first week of symptoms, with a peak at 7.11 × 108 RNA copies per throat swab on day 4. Infectious virus was readily isolated from samples derived from the throat or lung, but not from stool samples-in spite of high concentrations of virus RNA. Blood and urine samples never yielded virus. Active replication in the throat was confirmed by the presence of viral replicative RNA intermediates in the throat samples. We consistently detected sequence-distinct virus populations in throat and lung samples from one patient, proving independent replication. The shedding of viral RNA from sputum outlasted the end of symptoms. Seroconversion occurred after 7 days in 50% of patients (and by day 14 in all patients), but was not followed by a rapid decline in viral load. COVID-19 can present as a mild illness of the upper respiratory tract. The confirmation of active virus replication in the upper respiratory tract has implications for the containment of COVID-19.


Subject(s)
Betacoronavirus/immunology , Betacoronavirus/isolation & purification , Coronavirus Infections/immunology , Coronavirus Infections/virology , Hospitalization , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Seroconversion , Virus Replication , Antibodies, Viral/analysis , Antibodies, Viral/immunology , Base Sequence , Betacoronavirus/genetics , Betacoronavirus/pathogenicity , Blood/virology , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Coronavirus Envelope Proteins , Coronavirus Infections/diagnosis , Feces/chemistry , Feces/virology , Humans , Immunoglobulin G/analysis , Immunoglobulin G/immunology , Immunoglobulin M/analysis , Immunoglobulin M/immunology , Lung/virology , Pandemics , Pharynx/virology , Pneumonia, Viral/diagnosis , Polymorphism, Single Nucleotide/genetics , RNA, Viral/analysis , SARS-CoV-2 , Sputum/virology , Urine/virology , Viral Envelope Proteins/genetics , Viral Load/immunology , Virus Shedding
14.
Lancet Infect Dis ; 20(6): 697-706, 2020 06.
Article in English | MEDLINE | ID: covidwho-17918

ABSTRACT

BACKGROUND: On Dec 31, 2019, China reported a cluster of cases of pneumonia in people at Wuhan, Hubei Province. The responsible pathogen is a novel coronavirus, named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We report the relevant features of the first cases in Europe of confirmed infection, named coronavirus disease 2019 (COVID-19), with the first patient diagnosed with the disease on Jan 24, 2020. METHODS: In this case series, we followed five patients admitted to Bichat-Claude Bernard University Hospital (Paris, France) and Pellegrin University Hospital (Bordeaux, France) and diagnosed with COVID-19 by semi-quantitative RT-PCR on nasopharyngeal swabs. We assessed patterns of clinical disease and viral load from different samples (nasopharyngeal and blood, urine, and stool samples), which were obtained once daily for 3 days from hospital admission, and once every 2 or 3 days until patient discharge. All samples were refrigerated and shipped to laboratories in the National Reference Center for Respiratory Viruses (The Institut Pasteur, Paris, and Hospices Civils de Lyon, Lyon, France), where RNA extraction, real-time RT-PCR, and virus isolation and titration procedures were done. FINDINGS: The patients were three men (aged 31 years, 48 years, and 80 years) and two women (aged 30 years and 46 years), all of Chinese origin, who had travelled to France from China around mid-January, 2020. Three different clinical evolutions are described: (1) two paucisymptomatic women diagnosed within a day of exhibiting symptoms, with high nasopharyngeal titres of SARS-CoV-2 within the first 24 h of the illness onset (5·2 and 7·4 log10 copies per 1000 cells, respectively) and viral RNA detection in stools; (2) a two-step disease progression in two young men, with a secondary worsening around 10 days after disease onset despite a decreasing viral load in nasopharyngeal samples; and (3) an 80-year-old man with a rapid evolution towards multiple organ failure and a persistent high viral load in lower and upper respiratory tract with systemic virus dissemination and virus detection in plasma. The 80-year-old patient died on day 14 of illness (Feb 14, 2020); all other patients had recovered and been discharged by Feb 19, 2020. INTERPRETATION: We illustrated three different clinical and biological types of evolution in five patients infected with SARS-CoV-2 with detailed and comprehensive viral sampling strategy. We believe that these findings will contribute to a better understanding of the natural history of the disease and will contribute to advances in the implementation of more efficient infection control strategies. FUNDING: REACTing (Research & Action Emerging Infectious Diseases).


Subject(s)
Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Adult , Aged, 80 and over , Betacoronavirus/isolation & purification , Blood/virology , COVID-19 , China , Coronavirus Infections/virology , Feces/virology , Female , France/epidemiology , Humans , Male , Middle Aged , Nasopharynx/virology , Pandemics , Pneumonia, Viral/virology , RNA, Viral/isolation & purification , SARS-CoV-2 , Travel , Urine/virology , Viral Load
15.
Int J Infect Dis ; 93: 264-267, 2020 Apr.
Article in English | MEDLINE | ID: covidwho-2506

ABSTRACT

An ongoing outbreak of severe respiratory pneumonia associated with the 2019 novel coronavirus has recently emerged in China. Here we report the epidemiological, clinical, laboratory and radiological characteristics of 19 suspect cases. We compared the positive ratio of 2019-nCoV nucleic acid amplification test results from different samples including oropharyngeal swab, blood, urine and stool with 3 different fluorescent RT-PCR kits. Nine out of the 19 patients had 2019-nCoV infection detected using oropharyngeal swab samples, and the virus nucleic acid was also detected in eight of these nine patients using stool samples. None of positive results was identified in the blood and urine samples. These three different kits got the same result for each sample and the positive ratio of nucleic acid detection for 2019-nCoV was only 47.4% in the suspect patients. Therefore, it is possible that infected patients have been missed by using nucleic acid detection only. It might be better to make a diagnosis combining the computed tomography scans and nucleic acid detection.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/diagnosis , Nucleic Acid Amplification Techniques , Pneumonia, Viral/diagnosis , Blood/virology , COVID-19 , China/epidemiology , Coronavirus Infections/virology , Feces/virology , Female , Humans , Nucleic Acid Amplification Techniques/standards , Pandemics , Pharynx/virology , Pneumonia, Viral/virology , SARS-CoV-2 , Urine/virology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL